

Wood Pellets – The OTHER North American Energy Revolution

Presentation for: American Association of Port Authorities Maritime Economic Development Energy Projects Seminar Pensacola, FL – February 2015

Derik Andreoli, Mercator International --- dandreoli@mercatorintl.com

Wood Pellets Consumption Growth Rates Eclipse Fossil Fuel Growth Rates

DRAFT

Wood Pellet Demand is Largely Driven by Rapidly Growing European Consumption

U.K. Electricity Generation by Fuel Type

Competitive Advantage of Wood Pellets for Power Generation

Comparison of Alternative Sources of Power Generation							
	Baseload Power	Renewable	Low Carbon	Price/kWh			
Hydro	\checkmark	\checkmark	\checkmark	\$4.10			
Coal	\checkmark			\$14.89	Hiah		
Natural Gas (Combined Cycle)	\checkmark			\$21.84	Conocity		
Wood Pellet Conversion	\checkmark	\checkmark	\checkmark	\$24.03			
Nuclear	✓			\$65.76	Factors		
Onshore Wind		\checkmark	\checkmark	\$75.36	Low		
Offshore Wind		\checkmark	\checkmark	\$95.46	Capacity		
Solar PV		✓	\checkmark	\$125.31	Factors		
		\$/kWh					
\$140				\$125.31			
\$120							
\$100			\$9	95.46			
\$80		\$65.76	\$75.36				
\$60							
\$40	ta	4.02					
\$20 \$14.89	\$21.84 \$2	4.05					
\$4.10							
Hydro Coal	Natural Gas Woo Conv	d Pellet Nuclear version	Onshore Of Wind V	fshore Solar PV Vind			

Map of Existing and Proposed Wood Pellet Plants

2/27/2015

Wood Pellet Export Supply Chain

Sawmill/Logging Residues

Low Grade/Burnt Feedstock

Export Terminal

Rules of Thumb

- Each 500 MW power unit produces approximately 4 TWH per year when operating at a capacity factor of 90%
- 0.5 million MTPY (metric tonnes per year) are required to generate 1 TWH
- 2.0 million MTPY are required for each 500 MW power unit
- Supplying 2.0 million MTPY is efficiently handled via a weekly call of a 50,000 DWT vessel (large handymax/small supramax)
- This requires a conveyor system capable of handling 1,000 MT per hour, and
- Approximately 10 unit trains per week
- Supplying one 500 MW power unit generates approximately domestic 3,500 jobs

Overview of Wood Pellet Export Terminal Characteristics

2/27/2015

Handymax/ Supramax Vessel ~50,000 DWT

Covered Conveyor System (1,000 MT/h)

Two 25,000 MT Storage Domes

Three 1,400 foot tracks & Covered Offload Facility

10

European Power Producer Wood Pellet Demand Outlook

CASE STUDY

DRAX POWER STATION – U.K.

- Six 660 Megawatt Units
- Supplies 7% of UK electricity

Estimation of Potential Incremental European Wood Pellet Demand							
	Nameplate	Capacity at	Total Energy	Total Wood			
Power Plant	Capacity	80% Utilization	Generation	Pellet Demand			
	MW	MW	TWH/Y	MTPY			
DRAX 1*	650	585	5.12	2.6			
DRAX 2*	650	520	4.56	2.3			
DRAX 3	650	520	4.56	2.3			
DRAX 4**	650	520	4.56	2.3			
Lynemouth	350	280	2.45	1.2			
Tees	295	236	2.07	1.0			
Tilbury*	750	600	5.26	2.6			
EON Langerlo	500	400	3.50	1.8			
Netherlands	875	700	6.13	3.1			
Total Incremental Demand							

* DRAX 1 and DRAX 2 are already online at end of 2014

** DRAX 4 may or may not be converted

*** Tilbury may or may not be brought back online

2/27/2015

Asia Demand

Global Pellet Demand (Pöyry central scenario)

Source: Silvio Mergner, Poyry

Note on Potential Technological Developments

White Pellets: Fragile Hydrophilic Lower Energy Density Black Pellets: Sturdy Hydrophobic Higher Energy Density

DRAFT

Thank You

Derik Andreoli Mercator International dandreoli@mercatorintl.com

